Mouvement d'un point

But : Représentation de vecteurs vitesse instantanée et distinction de différents mouvements. Calcul de vitesses angulaires instantanées. Relation entre vitesse et vitesse angulaire.

Calcul de la vitesse instantanée à l'aide de la définition :

Travail sur <u>enregistrements</u> : tous les résultats sont donnés avec 2 chiffres significatifs.

• Enregistrement n°I (MRU)

Calculer: v_m puis v_2 ; v_7 ; v_9

Représenter : $\overrightarrow{v_2}$, $\overrightarrow{v_7}$, $\overrightarrow{v_9}$ à l'échelle 1 cm pour 0,3 m.s⁻¹

• Enregistrement n°II (MRU)

Calculer : v_1 ; v_{10} ; v_{14} et représenter : $\overrightarrow{v_4}$, $\overrightarrow{v_{10}}$, $\overrightarrow{v_{14}}$ à l'échelle 1 cm pour 0,1 m.s⁻¹

• Enregistrement n°III (MRA)

Calculer: v_m puis v_2 ; v_4 ; v_6

Représenter : $\overrightarrow{v_2}$, $\overrightarrow{v_4}$, $\overrightarrow{v_6}$ à l'échelle 1 cm pour 0,5 m.s⁻¹

point	ℓ (cm)	v (m/s)	longueur vecteur (cm)
2			
4			
6			

• Enregistrement n°IV (MRR)

Calculer : v_m puis v_2 ; v_5 ; v_{10}

Représenter : $\overrightarrow{v_2}$, $\overrightarrow{v_5}$, $\overrightarrow{v_{10}}$ à l'échelle 1 cm pour 10^{-1} m.s⁻¹

point	ℓ (cm)	v (m/s)	longueur vecteur (cm)
2			
5			
10			

• Enregistrement n°V (MCA)

Mesurer le rayon R de la trajectoire et l'exprimer en mètre

 $R = \dots$

Pour chaque point indiqué ci-après, mesurer longueurs telles que :

$c_1 - i v I_{(i-1)} i v I_{(i+1)}$ $c_1 - i v I_{(i-1)} i v I_i + i v I_{(i+1)} i v I_{(i+1)}$	$\ell_{i} = M_{(i-1)}M_{(i+1)}$	et	$\ell'_{i} = M_{(i-1)}M_{i} + M_{i}M_{(i+1)}$
---	---------------------------------	----	---

	1 (1.1)	1 (1.1)	
points	$\ell_{ m i}$	ℓ'_{i}	\nearrow Que peut-on dire de ℓ_i et ℓ'_i ?
1			
4			
7			
10			

 $Calculer: v_1; v_4; v_7 \ et \ représenter: \overrightarrow{v_1}, \overrightarrow{v_4}, \overrightarrow{v_7} \ \grave{a} \ \acute{e} chelle \ 1 \ cm \ pour \ 4\times 10^{\text{--}1} \ m.s^{\text{--}1}$

point	ℓ(cm)	v (m/s)	longueur vecteur (cm)
1			
4			
7			
10			

Mesurer les angles α_i tels que $\alpha_i = \widehat{M_{(i-1)}OM_{(i+1)}}$ et les exprimer en radian.

On définit la vitesse angulaire par : $\omega = \frac{\alpha}{t_{i-1} - t_{i+1}} = \frac{\alpha}{2\tau}$

Calculer : ω_1 ; ω_4 ; ω_7 ; ω_{10}

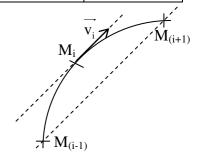
po	int	α(°)	α (rad)	ω (rad/s)	v/w
-	1				
4	4				
	7				
1	0				

 \checkmark Que représente le rapport v/ω? En déduire une relation entre v et ω.

Calculer la vitesse angulaire moyenne et en déduire la vitesse moyenne v_m.

point	α (°)	α (rad)	ω (rad/s)	
moyenne	330			$v_m =$

Comparer v_m à la moyenne des résultats v_i pour les points M₁, M₄, M₇, M₁₀.


• Enregistrement n°VI (M^{v†} curviligne varié)

Calculer: v₄; v₁₀; v₂₀; v₃₀; v₄₀ puis v₄₉

Représenter : $\overrightarrow{v_4}$; $\overrightarrow{v_{10}}$; $\overrightarrow{v_{20}}$; $\overrightarrow{v_{30}}$; $\overrightarrow{v_{40}}$; $\overrightarrow{v_{49}}$ à l'échelle 1 cm pour 5×10^{-2} m.s⁻¹

point	4	10	20	30	40	49
ℓ (cm)						
v (m/s)						
long vect (cm)						

Représentation du vecteur vitesse pour un mouvement curviligne :

